AN APPLICATION OF THE FINITE ELEMENT METHOD TO ELASTIC-PLASTIC PROBLEMS OF PLANE STRESS

M. SALMON

IIT Research Institute Chicago, Illinois

L. BERKE and R. SANDHU

Air Force Flight Dynamics Laboratory Wright-Patterson AFB, Ohio

TECHNICAL REPORT AFFDL-TR-68-39

MAY 1970

This document has been approved for public release and sale; its distribution is unlimited.

AIR FORCE FLIGHT DYNAMICS LABORATORY
AIR FORCE SYSTEMS COMMAND
WRIGHT-PATTERSON AIR FORCE BASE, OHIO

NOTICE

When Government drawings, specifications, or other data are used for any purpose other than in connection with a definitely related Government procurement operation, the United States Government thereby incurs no responsibility nor any obligation whatsoever; and the fact that the government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data, is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto.

This document has been approved for public release and sale; its distribution is unlimited.

Copies of this report should not be returned unless return is required by security considerations, contractual obligations, or notice on a specific document.

AN APPLICATION OF THE FINITE ELEMENT METHOD TO ELASTIC-PLASTIC PROBLEMS OF PLANE STRESS

M. SALMON

IIT Research Institute Chicago, Illinois

L. BERKE and R. SANDHU

Air Force Flight Dynamics Laboratory Wright-Patterson AFB, Ohio

This document has been approved for public release and sale; its distribution is unlimited.

FOREWORD

This report was prepared by the Illinois Institute of Technology
Research Institute and the Air Force Flight Dynamics Laboratory as a
joint in-house effort under Project No. 1467, "Structural Analysis
Methods."

The computer program presented here was developed through a number of modifications during the period January 1967 through December 1968.

This report has been reviewed and is approved.

FRANCIS J. JANK, JR.

Chief, Solid Mechanics Branch

Structures Division

Air Force Flight Dynamics Laboratory

ABSTRACT

A computer program is presented for the small strain analysis of plane structures in the strain hardening elastic-plastic range. The finite element displacement method is used to perform the linear analyses in the iterative scheme. Bar and constant strain isotropic plane stress triangles are available for use in constructing idealizations. The use of ten different sets of material properties, three different material laws, and incremental proportional loading are available as options. Good correlation is shown with available test data and theoretical solutions.

The distribution of this abstract is unlimited.

TABLE OF CONTENTS

ECTION			PAGE			
I	INTRODUCTION					
П	METHOD OF ANALYSIS					
	1.	Element Properties	3			
	2.	necessary and sufficient conditions, but the grows. Elastic-Plastic Analysis	8			
	3.	Stress-Strain Laws	12			
Ш		that unique best linear untiased exclusions (TALIR'S	14			
		Nonlinear Truss	14			
		location parameters. Fisc. the theory is illimited. Shear Lag Specimen	14			
		Perforated Strip	20			
IV	DE	SCRIPTION OF COMPUTER PROGRAM	23			
	1.	Introduction	23			
	2.	Input Data and Description of Output	23			
REFE	EREN	ICES	29			
APPE	INDI	X. COMPUTER PROGRAM LISTING	31			

ILLUSTRATIONS

FIGURE		PAGE				
1.	Bar and Plate Elements					
2.	Nonlinear Truss (Ref. 6)					
3.	Load versus Tip Displacement - Nonlinear Truss					
4.	MIT Shear Lag Specimen	17				
5.	MIT Shear Lag Specimen - Configuration I	18				
6.	MIT Shear Lag Specimen - Configuration II	18				
7.	Comparison of Test Results of Shear Lag Specimen with Finite Element Analyses Axial Strain at Center of Stiffener					
8.	Perforated Strip Finite Element Idealization					
9.	Maximum Values of E ϵ_{y}/σ_{o} for Perforated Strip					
	TABLES					
TABLE						
I	Correspondence between Program Variables and Stress-Strain Law Parameters	23				
II	Program Modification 25					
III	Input Data Format 26					

SECTION I

INTRODUCTION

This report describes a computer program for the stress analysis of plane structures in the elastic-plastic range by the finite element method. The program can handle bar and triangular plate elements so that it is applicable to trusses and to the analysis of in-plane stresses in reinforced plates. The material behavior is assumed to be isotropic and the user has a choice of three types of stress-strain laws and ten different materials.

A numerical step by step procedure for obtaining solutions which satisfy the requirements of the incremental theory of plasticity for materials which obey the Mises yield condition and the associated flow rule is used in the program. At each step in the solution, an iterative procedure is used to find the correct values of the strain increments. Changes in plastic strain are accounted for by the addition of fictitious plastic forces to the actual loading on the structure in such a way that the deflections of the structure under the modified loading with assumed elastic behavior are equal to the actual deflections. A modified form of the computer program given in Reference 1 is used to obtain elastic solutions.

The finite element method originally developed for elastic stress analysis was extended to apply to inelastic material behavior by Padlog (Reference 2) et al. Further studies of the use of the method in elastic-plastic problems have been made, for example, at MIT (Reference 3) and the California Institute of Technology (Reference 4).

The method has been extended to apply to anisotropic materials by

Jensen (Reference 5). Marcal and King (Reference 7) have applied
the method to problems of plane stress and strain and to axisymmetric
problems. However, the computer programs necessary for the application of the method have not been published. The purpose of this
report is to make such a program available.

The following section of the report presents a detailed explanation of the method of analysis. The application of the program is demonstrated by examples in Section III. Directions for the use of the computer program are given in Section IV. Listing of the program and sample data sets are given in the Appendix.

SECTION II

METHOD OF ANALYSIS

The analysis procedure used in the computer program is described here. The method, first used by Padlog for the solution of problems involving plastic flow and creep, is given here in a slightly modified form. The well known formulas for the stiffness of bars and triangular plate elements are first presented. Then the step by step iterative procedure used for the solution of problems in which plastic flow occurs is described.

1. ELEMENT PROPERTIES

The two types of elements to be considered in this analysis (the bar and the triangular plate) are shown in Figure 1. The coordinates of the end points of the bar and the vertices of the triangle are referred to a fixed coordinate system in the plane. The cartesian components of the nodal displacements for each of these elements comprise the element displacement vector X. The ordering of the displacement components is shown in Figure 1. The total element strains designated by the vector € can be expressed in terms of the nodal displacements by an equation of the form

$$\epsilon = BX$$
 (+)

The stresses are related to the elastic strains $\epsilon^e = \epsilon - \epsilon^p$ by Hooke's law

$$\sigma = C \epsilon^{e} \tag{2}$$

Figure 1. Bar and Plate Elements

The nodal forces F corresponding to given displacements X are found by the principle of virtual work. That is

$$\overline{X}$$
 'F = $\int_{V} \overline{\epsilon}$ ' σ d V (3)

where \overline{X} and $\overline{\epsilon}$ are the virtual displacement vector and the corresponding strain vector, respectively, and the integration is carried out over the volume of the element. Prime superscripts denote transposed matrices. Using Equations 1 and 2 in Equation 3 gives the results

$$\overline{X}$$
' $\left[F - \int_{V} B'CBdVX + \int_{V} B'CdV \epsilon^{p} \right] = 0$ (4)

Or, since the elements of \overline{X} are arbitrary, then

$$F + F^{p} = kX \tag{5}$$

where

$$k = \int_{V} B' C B d V \qquad (6)$$

is the element stiffness matrix and

$$F^{p} = D \epsilon^{p} \tag{7}$$

is the vector of plastic forces in which

$$D = \int_{V} B' C dV$$
 (8)

The definitions of the nodal force and displacement vectors and of the matrices C, B, D, and k for bars and triangular plate elements are:

Bar Element

$$x' = \left[u_1, v_1, u_2, v_2 \right] \tag{9}$$

$$F' = [F_{x1}, F_{y1}, F_{x2}, F_{y2}]$$
 (10)

$$B = \frac{1}{L^2} \left[-x_{21}^2, -y_{21}^2, x_{21}^2, y_{21}^2 \right]$$
 (11)

in which L is the length of the bar and

$$x_{21} = x_2 - x_1, \quad y_{21} = y_2 - y_1 \text{ etc}$$
 (12)

$$x_{21} = x_{2} - x_{1}, \quad y_{21} = y_{2} - y_{1} \text{ etc}$$
 (12)
 $C = E_{1} - Young's modulus$ (13)

$$\frac{AE}{10} \left[-x_{21}, -y_{21}, x_{21}, y_{21} \right]$$
(14)

where A is the cross-sectional area of the bar

Thus since
$$r = \{b^s \mid b^s\}$$
 and $r = \{b^s \mid b^s\}$ and $r = \{b^s$

in which

The late
$$\frac{1}{3}$$
 found that $\frac{1}{3}$ is a constant $\frac{1}{3}$ of part of the $\frac{1}{3}$. Thus it is found that $\frac{1}{3}$ is a constant $\frac{1}{3}$ of part of the $\frac{1}{3}$.

Triangular Plate Element

$$\begin{array}{c}
X = \left\{ \begin{array}{c}
\mathbf{u}_{1}, \mathbf{v}_{1}, \mathbf{u}_{2}, \mathbf{v}_{2}, \mathbf{u}_{3}, \mathbf{v}_{3}
\end{array} \right\} \text{ for one exact such a position } (17)$$

$$F' = \begin{bmatrix} F_{x1}, F_{y1}, F_{x2}, F_{y3}, F_{x3}, F_{y3} \end{bmatrix}$$

$$F_{x1} = \begin{bmatrix} F_{x1}, F_{y1}, F_{x2}, F_{y3}, F_{x3}, F_{y3} \end{bmatrix}$$

$$F_{x2} = \begin{bmatrix} F_{x1}, F_{y2}, F_{x3}, F_{y3}, F_{x3}, F_{y3}, F_{y3},$$

$$\left[\sigma_{x},\sigma_{y},\tau_{xy}\right] \tag{20}$$

$$B = \frac{1}{h} \begin{bmatrix} -y_{32} & 0 & y_{31} & 0 & -y_{21} & 0 \\ 0 & x_{32} & 0 & -x_{31} & 0 & x_{21} \\ -x_{32} & -y_{32} & -x_{31} & y_{31} & x_{21} & -y_{21} \end{bmatrix}$$
 (21)

where wand sade of " .Sa equals

$$h = x_{21}y_{31} - x_{31}y_{21}$$
Thus, those (3.36), equation for a sequivalent (22)

The absolute value of h equals twice the area of the triangular element.

$$C = \frac{E}{1-\nu^2} \begin{bmatrix} 1 & \nu & 0 \\ \nu & 1 & 0 \\ 0 & 0 & (1-\nu)/2 \end{bmatrix}$$
 (23)

in which ν = Poisson's ratio

$$D = \frac{E + |h|}{2h (1 - \nu^2)} \begin{cases} -y_{32} & -\nu y_{32} & C_1 x_{32} \\ \nu x_{32} & x_{32} & -C_1 y_{32} \\ y_{31} & \nu y_{31} & -C_1 x_{31} \\ \nu x_{31} & -x_{31} & C_1 y_{31} \\ -y_{21} & -\nu y_{21} & C_1 x_{21} \\ \nu x_{21} & x_{21} & -C_1 y_{21} \end{bmatrix}$$
(24)

where $C_1 = (1-\nu)/2$ and t is the element thickness.

$$k = \frac{E \dagger}{2 |h| (1 - v^2)} \overline{k}$$
 (25)

where

$$\overline{k}_{ij} = \overline{k}_{ji}$$
 (26)

$$\overline{k}_{11} = y_{32}^{2}, \overline{k}_{12} = -\nu x_{32} y_{32} - C_{1} x_{32} y_{32}
\overline{k}_{13} = -y_{31} y_{32} - C_{1} x_{31} x_{32}, \overline{k}_{14} = \nu x_{31} y_{32} + C_{1} y_{31} x_{32}
\overline{k}_{15} = y_{21} y_{32} + C_{1} x_{21} x_{32}, \overline{k}_{16} = -\nu x_{21} y_{32} - C_{1} y_{21} x_{32}
\overline{k}_{22} = x_{32}^{2} + C_{1} y_{32}^{2}, \overline{k}_{23} = \nu y_{31} x_{32} + C_{1} x_{31} y_{32}
\overline{k}_{24} = -x_{31} x_{32} - C_{1} y_{31} y_{32}, \overline{k}_{25} = -\nu y_{21} x_{32} - C_{1} x_{21} y_{32}
\overline{k}_{26} = x_{21} x_{32} + C_{1} y_{21} y_{32}, \overline{k}_{33} = y_{31}^{2} + C_{1} x_{31}^{2},
\overline{k}_{34} = -\nu x_{31} y_{31} - C_{1} y_{31} x_{31}, \overline{k}_{35} = -y_{21} x_{31} - C_{1} x_{21} x_{31}
\overline{k}_{36} = \nu x_{21} y_{31} + C_{1} y_{21} x_{31}, \overline{k}_{44} = x_{31}^{2} + C_{1} y_{31}^{2},
\overline{k}_{45} = \nu y_{21} x_{31} + C_{1} x_{21} y_{31}, \overline{k}_{46} = -x_{21} x_{31} - C_{1} y_{21} y_{31}
\overline{k}_{55} = y_{21}^{2} + C_{1} x_{21}^{2}, \overline{k}_{56} = -\nu x_{21} y_{21} - C_{1} x_{21} y_{21}
\overline{k}_{66} = x_{21}^{2} + C_{1} y_{21}^{2}$$
(27)

2. ELASTIC-PLASTIC ANALYSIS

In the elastic range of material behavior the equilibrium equations for a structure composed of plate and bar elements of the type considered here can be written

$$F = KX \tag{28}$$

where the force and displacement vectors now have as their components the cartesian components of force and displacement at all the nodes and K is the assembled stiffness matrix for the whole structure. The solution of Equation 28 for the unknown displacement is given symbolically by

$$X = K^{-1} F \tag{29}$$

The displacements known, the element strains can be obtained from Equation 1 and the stresses from Equation 2. However, when the stresses reach the intensity required to cause plastic flow, it becomes necessary to determine the increments of plastic strain caused by the load increment. The material is assumed to obey the Mises yield condition and the associated flow rule. For plane stress the following equations apply

$$\overline{\sigma} = \left(\sigma_{x}^{2} - \sigma_{x}\sigma_{y} + \sigma_{y}^{2} + 3\tau_{xy}^{2}\right)^{1/2} = H(\overline{\epsilon}^{p})$$
(30)

$$\Delta \overline{\epsilon}_{x}^{p} = \frac{2}{\sqrt{3}} \left(\Delta \epsilon_{x}^{p^{2}} + \Delta \epsilon_{x}^{p} \Delta \epsilon_{y}^{p} + \Delta \epsilon_{y}^{p^{2}} + \frac{1}{4} \gamma_{xy}^{p^{2}} \right)^{1/2}$$
 (31)

$$\Delta \epsilon_{x}^{p} = \frac{\Delta \bar{\epsilon}^{p}}{2 \, \bar{\sigma}} (2 \, \sigma_{x} - \sigma_{y})$$

$$\Delta \epsilon_{y}^{p} = \frac{\Delta \overline{\epsilon}^{p}}{2\overline{\sigma}} (2\sigma_{y} - \sigma_{x})$$
 (32)

$$\Delta \gamma_{xy}^p = 3 \frac{\Delta \overline{\epsilon}^p}{\overline{\sigma}} \tau_{xy}$$

where $\overline{\sigma}$ and $\overline{\epsilon}^{\,p}$ are the effective stress and the effective plastic strain, respectively, and where $H(\overline{\epsilon}^{\,p})$ is the stress-plastic strain relation for uniaxial stress.

If it is assumed that the response of the structure to the removal of a load increment will be completely elastic then Equation 28 can be modified to account for plastic flow as follows

$$KX = F + F^{p} \tag{33}$$

where X and F are the displacement and load after the application of the increment and F^p is the vector of plastic forces corresponding to the plastic strains. The plastic strain increments caused by the increment of load must satisfy Equations 32 and for an element undergoing plastic flow the stresses must satisfy the yield condition (Equation 30).

The following step by step iterative method is used to obtain solutions:

- 1. An increment is given to the applied loads.
- 2. New values of displacement are found from Equation 33 using the current values of the plastic forces (these will be zero for the first step).
- 3. The displacements are used to compute total strains, elastic strains, stresses, and the effective stress.
- 4. If the new value of the effective stress is greater than the largest previous value, the element is plastic and the effective stress is used to determine a new value of the effective strain.
- 5. Plastic strain increments computed from Equations 32 are added to the current values of the plastic strain and new values of the plastic forces are calculated.
- 6. If the increment in effective plastic strain is sufficiently small the iteration is complete and a return to step 1 is made, if not a return is made to step 2 and a new cycle begun.

This procedure is applied to each of the elements and the decision to start a new step (apply a load increment) is based on the largest plastic strain increment found among all the elements.

An important feature of the method is the way in which the effective plastic strain is computed from the new value of the effective stress at each iteration. If the inverse of Equation 30 is used to give $\overline{\epsilon}^p$ as a function of $\overline{\sigma}$ the solution may become unstable. This becomes obvious when one considers the case of the elastic, perfectly plastic material for which the inverse of the function $H(\overline{\epsilon}^p)$ does not exist. To avoid this difficulty the "constant strain" method of Reference 2 is used. In this method the total strain ϵ_1 is taken equal to the sum of the value of $\overline{\epsilon}^p$ computed in the previous iteration and $\overline{\sigma}/E$.

The stress-strain law can be written in the form

$$\epsilon_{\dagger} = \frac{\overline{\sigma}}{E} + \overline{\epsilon}^{p}$$
or
$$\epsilon_{\dagger} = \frac{H(\overline{\epsilon}^{p})}{E} + \overline{\epsilon}^{p} \tag{34}$$

The new value of $\overline{\epsilon}^{p}$ can be found from Equation 34 without difficulty.

The criterion used in step 6 of the iterative procedure given above, to decide whether the plastic strains have been determined with sufficient accuracy, is the size of the ratio of the increment in effective plastic strain to $\overline{\sigma}/E$. This ratio is a measure of the difference between the ordinates to the theoretical stress strain curve and the curve that is actually being used at that step in the calculation.

3. STRESS-STRAIN LAWS

The following three types of stress-strain laws are available for use in the computer program. Each of them is a three parameter law.

Type 1 - Ramberg-Osgood Law

$$\epsilon_{t} = \frac{\sigma}{E} + \frac{3\sigma_{1}}{7E} \left(\frac{\sigma}{\sigma_{1}}\right)^{n}$$

in which

E — Young's modulus

σ - secant yield stress (stress at which the secant modulus = 0.7E)

n — shape factor

Type 2 - Goldberg-Richard Law

$$\sigma = E \epsilon_{\uparrow} \left[1 + \left| \frac{E \epsilon_{\uparrow}}{\sigma_{u}} \right|^{n} \right]^{-1/n}$$

in which

E — Young's modulus

 $\sigma_{_{\!\scriptscriptstyle {
m I}}}$ — maximum stress

n - shape factor

Type 3 - Bilinear Law

$$\sigma = E \epsilon_{t}$$
, for $\sigma < \sigma_{y}$
 $\sigma = \sigma_{y} + E_{t} (\epsilon_{t} - \frac{\sigma_{y}}{E})$, for $\sigma \ge \sigma_{y}$

AFFDL-TR-68-39

in which

E - Young's modulus

 $\sigma_{\!_{f V}}$ — yield stress

 E_1 — Slope of the plastic portion of the stress-strain curve

To reduce computing time a linearized form of the Ramberg-Osgood law is used in the program. This law is fitted by a series of straight line segments which match the actual curve at 100 points in the interval $0 \le \epsilon_{\uparrow} \le 20 \sigma_{\downarrow} / E$. If values of ϵ_{\uparrow} outside this range are encountered the exact formula is used.

SECTION III

EXAMPLES

1. NONLINEAR TRUSS

To illustrate the use of the program a solution for the member stresses and the tip deflection of the cantilever truss shown in Figure 2 is obtained. A stress-strain relation of the Ramberg-Osgood type is assumed with values of $E = 10.3 \times 10^6$, $\sigma_1 = 40.5 \times 10^3$, and n = 7. A solution by another method is given in Reference 6. A comparison of the stresses obtained by the two methods is shown in the table in Figure 2. The tip displacement is shown as a function of the load in Figure 3. The displacements obtained by the two methods agree so closely that both solutions are represented by a single curve.

2. SHEAR LAG SPECIMEN

As a second example, solutions are obtained for the shear lag specimen tested in Reference 3 shown in Figure 4. Two solutions are obtained. In the first solution the same idealization of the structure is used as that used in Reference 3 (see Figure 5). The second solution is found using the idealization shown in Figure 6. Values of the Ramberg-Osgood constants of $E = 10.2 \times 10^6$, $\sigma_1 = 46.6 \times 10^3$, and n = 10 were used. These correspond to the values for the RO2 stress-strain curve of Reference 3.

	FORCE, in kips				
ELEMENT	Ref. 6	Present Analysis			
1	11.26	11.18			
2	6.23	6.19			
3	- 6.27	- 6.31			
4	-11.24	-11.11			
5	- 0.51	- 0.52			
6	3, 35	3. 33			
7	6.91	6.95			
8	- 5.59	- 5.55			
9	- 4.15	- 4.17			
10	4. 47	4.44			

Figure 2. Nonlinear Truss

Figure 3. Load Versus Tip Displacement - Nonlinear Truss

Figure 4. MIT Shear Lag Specimen

Figure 5. MIT Shear Lag Specimen - Configuration I

Figure 6. MIT Shear Lag Specimen - Configuration II

Figure 7. Comparison of Test Results of Shear Lag Specimen with Finite Element Analyses, Axial Strain at Center of Stiffener

A comparison of the results of these solutions with the test data for axial strain at the center of the stiffener is given in Figure 7. While the second solution is in better agreement with the test results than the first, the agreement at large values of the load is poor. A still more refined idealization would probably improve the solution but, as shown in Reference 5, much of the discrepancy is due to the inadequacy of the tensile stress-strain data in the range of large strains.

3. PERFORATED STRIP

Theocaris and Marketos (Reference 8) obtained results for a linear strain-hardening aluminum strip with a ratio of hole diameter to strip width of 1:2. The material properties were

yield stress = 24.3 kg/mm^2

plastic modulus = 225.0 kg/mm²

Young's modulus = 7000.0 kg/mm²

The finite element idealization of the test specimen is shown in Figure 8; 116 nodes and 172 triangular elements were used. A comparison of measured and computed values of the maximum strain in the y direction at the edge of the hole is given in Figure 9. The agreement between theory and experiment is fairly good. The same test is used by Marcal and King (Reference 7) for comparison with the results of their analysis and about the same degree of agreement is obtained.

Figure 8. Perforated Strip Finite Element Idealization

SECTION IV

DESCRIPTION OF COMPUTER PROGRAM

1. INTRODUCTION

The FORTRAN IV program for the elastic-plastic analysis of plane structures composed of bar and triangular plate elements is described in this section. The correspondence between the program variables and the stress-strain law parameters for each of the three laws available is given in Table I.

TABLE I

CORRESPONDENCE BETWEEN PROGRAM VARIABLES
AND STRESS-STRAIN LAW PARAMETERS

	Program Variables					
Stress-Strain Law	ILAW	E	EE1	EE2	PRR	
Ramberg-Osgood	1	E	σ_1	n	ν	
Goldberg-Richard	2	E	$\sigma_{ m u}$	n	ν	
Bilinear	3	E	σ	E ₁	ν	

2. INPUT DATA AND DESCRIPTION OF OUTPUT

The geometry of the structure is determined by specifying the x and y coordinates of each node with respect to a fixed set of coordinate axes and the thickness (cross-sectional area in the case of bars) of the elements. Up to 225 nodes and 400 elements can be handled. The program uses a subroutine for the solution of simultaneous equations in band form written by Professor E. L. Wilson of the University of

California. Great economies in storage requirements and in time required for solution are achieved in this way; however, the bandwidth of the equations defined by the idealization of the structure is limited in size. To meet this limitation on bandwidth the difference between the node numbers on any element must be 9 or less. Instructions for increasing the bandwidth are given in Table II.

The displacement components in the x and y direction can be specified at any node or a node can be required to move along a line with a specified slope. Boundary conditions can be specified at up to 29 nodes.

The x and y components of load can be specified at any node.

Distributed loads must be treated as concentrated at the nodes.

The number of equal increments (steps) into which the applied loads and specified displacements are to be divided is specified as input. It is also necessary to specify the number of the increment at which the solution is to start. For example, if a number of increments NDIV = 20 is specified and a value of the starting increments KSTART = 5 is used, one quarter of the load (displacement) will be applied in the first step, the rest in 15 equal increments. If it is desired to stop the solution at an intermediate step a value of KSTOP may be specified. If the unloading solution is desired the value IUNLD = 1 is used.

An error tolerance must be specified as input. After each cycle of iteration the maximum error among all the elements is compared with the specified tolerance. If the tolerance is met the next load

TABLE II

PROGRAM MODIFICATION

The bandwidth is governed by the difference between the node numbers of a given element. The largest such difference J determines the bandwidth in this program by the formula MBAND = 2 * J + 3. This number cannot be greater than 22 in the present program. This is a rather small bandwidth, but it allows 225 nodes in a 32K core machine. To change the applicable problem size of the program in terms of the basic problem size parameters the following dimensions have to be changed:

	To Change:	Change Dimensions of:
1.	Number of materials	EE, EE1, EE2, PRR, and TAB in common statements (presently 10)
2.	Number of elements	I1, I2, I3, I4, NTYPE, Z, SEF, SET, EEP, EXPL, EYP, EXYP in common statement, JX in main program, and modify equivalence statements containing JX (presently 400)
3.	Number of nodes	B, X, XCORD, Y, ICODE, FP, F in common statements, FE in main program, ICODE in subroutine DCODE, XX in subroutine ELEM (presently 225 or 2 x 225 = 450)
4.	Bandwidth	B in common statements (presently 22)
5.	Number of nodes with boundary conditions	BC in common statements (presently 30)

increment is applied, if not, the iteration is continued. If the tolerance on error is not met when the allowable number of iterations is reached the solution is stopped. A detailed description of the input data format is given in Table III.

TABLE III
INPUT DATA FORMAT*

Card 1	TITLE	CARD (72H	H)		
Col	1-72 Any alphanumeric information				
Card 2 Col	PROPE 1-5 6-10 11-15 16-20 21-25 26-30 31-35	NELEM		number of nodes (maximum 225) number of elements (maximum 400) 1 Ramberg-Osgood Law 2 Goldberg-Richard Law 3 Bilinear Law 1 Unloading following loading 0 Loading only number of materials used (maximum 10) maximum bandwidth, MAXBND = 22 for this program number of boundary conditions with prescribed displacement. The maximum number is 30 in this program.	
Card 3 Col	1-15 16-25 26-35	EE EE1 PRR	- -	TIES CARDS (E15.8, 3F10.5) modulus of elasticity secant yield stress, ultimate stress, yield stress Poisson's ratio	
	36-45	EE2	-	shape parameter, plastic modulus	
Card 4 Col	CONTR 1- 5 6-10 11-15	OL CARD NDIV NIT NPRINT	(6I - - -	number of load increments maximum number of iterations per step print output for each NPRINT incre- ment. (e.g., if NPRINT = 3, for increments 3, 6, 9 etc.)	
	16-20	KSTART	-	number of increments at which solution is to start	
	21-25	KSTOP	-	number of increments at which solution is to stop	
	26-30	NLOAD	-	number of nodes at which loads are specified	
	31-40	TOL	-	error tolerance	

TABLE III (CONTD)

Card 5	5 NODE CARDS (415, 5F10.0)				
Col	1 - 5	Node num	ber		
	6-10	IBCX =	1,	if displacement in x-direction is specified	
	11-15	IBCY =	1,	if displacement in y-direction is specified	
	16-20	IBCS =	1,	if slope is specified	
		XCORD	-		
	31 - 40	YCORD	-	y coordinate of this node	
	41-50	BCI	-	specified displacement in x-direction	
	51-60	BC2	_		
	61-70		-	specified slope at the node	
Card 6 Col	1- 5 6-10 11-15 16-20	Element 1	num - - -	nodes defining the element nodes defining the element nodes defining the element material type	
Card 7	1- 5	CARDS (I5, Node num x-compor y-compor	iber ient	of force	

*NOTE: Input data information in Table III is self explanatory. The use of more than one material, however, may need some clarification. The number of materials "MAT" specified in the field of card 2 defines the number of material properties cards. The sequencing of these cards in turn defines "NTYPE" in the element card, for example, if the element uses material specified in the second material properties card, integer 2 is placed in the field corresponding to "NTYPE".

The nodal forces and displacements, the maximum error and the number of the element in which it occurs are printed out at the end of each step (increment). The cartesian components, principal values, and direction of stress and strain are printed out at the user's option by specifying a value of NPRNT as input. For example, a value of NPRNT = 3 will cause the stresses and strains to be printed out for increment numbers divisible by three. The directions of the principal axes of stress are defined by

$$\phi = -\frac{1}{2} \tan^{-1} \frac{2\tau}{\sigma_x - \sigma_y}, -\frac{\pi}{2} < \phi < \frac{\pi}{2}$$

The value of ϕ in degrees is printed out. In the case of strain the principal directions are defined by

$$\phi = -\frac{1}{2} \tan^{-1} \frac{\gamma}{\epsilon_{x} - \epsilon_{y}}, -\frac{\pi}{2} < \phi < \frac{\pi}{2}$$

This value is also printed out since in general the principal axes of stress and total strain do not coincide when plastic flow has taken place.

The effective stress and the effective plastic strain are also given as output for each element.

The input data is printed out at the start of the program to aid in problem identification and checking.

REFERENCES

- 1. J. S. Prezmieniecki and L. Berke, <u>Digital Computer Program for</u> the Analysis of Aerospace Structures by the Matrix Displacement Method, FDL-TDR-64-18, April 1964.
- 2. J. Padlog, R. D. Huff, and G. F. Holloway, <u>Unelastic Behavior of Structures Subjected to Cyclic</u>, Thermal, and Mechanical Stressing <u>Conditions</u>, WADD-TR-60-271, December 1960.
- 3. J. H. Percy, W. A. Loden, and D. R. Navaratna, A Study of Matrix Analysis Methods for Inelastic Structures, RDT-TDR-63-4032, October 1963.
- 4. J. L. Swedlow and W. H. Yang, <u>Stiffness Analysis of Elasto-Plastic</u> Plates, AFRPL-TR-66-5, January 1966.
- 5. W. R. Jensen et al, <u>Matrix Analysis Methods for Inelastic</u> Structures.
- 6. R. M. Richard and J. E. Goldberg, <u>Analysis of Nonlinear Structures: Force Method</u>, Proc. ASCE, Jour. Struct. Div., December 1965.
- 7. P. V. Marcal and I. P. King, <u>Elastic-Plastic Analysis of Two-Dimensional Stress Systems by the Finite Element Method</u>, Int. J. Mech. Sci., Vol. 9, pp 143-155, 1967.
- 8. P. S. Theocaris and E. Marketos, <u>Elastic-Plastic Analysis of Perforated Strips of Strain-Hardening Material</u>, J. Mech Phys. Solids, Vol. 12, pp. 377-390, 1964.

APPENDIX

COMPUTER PROGRAM LISTING

The FORTRAN IV Source Program and three sample data cases are listed. The first case is the nonlinear truss with Ramberg-Osgood representation of one material. This data is associated with Figures 2 and 3. The second case is the same truss problem slightly changed to show the introduction of more than one material. The third case is Configuration I for the MIT test specimen.

The source deck of the computer program described herein can be obtained by contacting AFFDL (FDTR/BERKE), WPAFB-Ohio, 45433. (513-25-53418).

```
$IBJOB
                                                                    VER70000
SIBFTC VER7
       ELASTIC PLASTIC FINITE ELEMENT PROGAM
                                                                    VER70001
       WITH THREE STRESS STRAIN LAW OPTIONS
                                                                    VER70002
     COMMON/AOD/ EE(10), EE1(10), EE2(10), PRR(10)
                                                                    VFR70003
     COMMON E,CC,G1,E2,PR,EPR,X21,Y21,X31,Y31,X32,Y32,XERR,
                                                                    VER70004
            N2, NELEM, KEL, ILAW, MAT, NBC,
                                                                    VFR70005
    1
             B(450,22), BC(30,3), TAB(101,20), IFIX(2),
                                                                    VER70006
    2
    3
             X(450), XCURO(225), Y(225), ICODE(225),
                                                                    VER70007
                                                                    VER70008
            FP(450),F(450),
            I1(400),121400), I3(400), NTYPE(400), Z(400), I4(400),
    5
                                                                   VER70009
            SEF(400), SET(400), EEP(400), EXPL(400), EYP(400), EXYP(400), VER70010
       NNOOE, MBAND
                                                                    VER70011
     DIMENSION JX(400,3), FE(450)
                                                                    VER70012
     EQUIVALENCE (JX, 11), (JX(401), 12), (JX(801), 13)
                                                                    VER70013
                                                                    VER70014
     EQUIVALENCE (IFIX(1), IBCX), (IFIX(2), IBCY)
C
                                                                    VER70015
  **** READ AND PRINT DATA ****
C
                                                                    VER70016
C
                                                                    VER70017
  10 READ (5,20)
                                                                    VER70018
                                                                     VER70019
     IONE=1
  20 FORMAT(72H BCO INFORMATION
                                                                    VER70020
                                                                     VER70021
    1
                   )
     WRITE (6,30)
                                                                     VER70022
                                                                     VER70023
  30 FORMAT(1H1)
     WRITE (6,20)
                                                                    VER70024
     READ(5,40) NNOOE, NELEM, ILAW, IUNLO, MAT, MAXBND, NBC
                                                                    VER70025
  40 FORMAT(1415)
                                                                    VER70026
     READ(5,50) (EE(I),EE1(I) ,PRR(I),EE2(I),I=1,MAT)
                                                                    VER70027
  50 FORMAT(E15.8,3F10.5)
                                                                    VER70028
     READ(5,60)NDIV, NIT, NPRNT, KSTART, KSTOP, NLOAD, TOL
                                                                    VER70029
  60 FORMAT(615.F10.0)
                                                                     VER70030
     IF(KSTOP.EQ.O) KSTOP=NDIV
                                                                    VEK70031
     GO TU(70,90,110), ILAW
                                                                    VER70032
  70 WRITE(6,80) (I,EE(I),EE1(I),EE2(I),PRR(I),TOL,I=1,MAT)
                                                                    VER70033
  80 FORMAT(1H014X18HRAMBERG OSGUOD LAW/
                                                                    VER70034
    115X.30HMATERIAL----- [3/
                                                                    VER70035
     215X30HMOOULUS OF ELASTICITY---- E12.4/
                                                                    VER70036
    315X30HSECANT YIELO STRESS----- E12.4/
                                                                    VER70037
     415X3GHSHAPE PARAMETER----- E12.4/
                                                                     VER70038
     515X30HPOISSON'S RATIO----- F8.4/
                                                                    VER70039
    615X3CHERROR TOLERANCE----- F8.4)
                                                                    VER70040
     GO TO 130
                                                                    VER70041
  90 WRITE(6,100) (I,EE(I),EE1(I),EE2(I),PRR(I),TOL,I=1,MAT)
                                                                    VER70042
  100 FORMAT(1H014X20HGOLOBERG RICHARO LAW/
                                                                    VER70043
    115X.30HMATERIAL----- 13/
                                                                     VER70044
     215X30HMOOULUS OF ELASTICITY---- E12.4/
                                                                     VER70045
     315X30HULTIMATE STRESS----- E12.4/
                                                                    VER70046
     415X30HSHAPE PARAMETER----- E12.4/
                                                                    VER70047
     515X30HP0ISSON'S RATIO----- F8.4/
                                                                    VER70048
    615X30HERROR TOLERANCE----- F8.4)
                                                                    VER70049
     GO TO 130
                                                                    VER70050
  110 WRITE(6,120) (I,EE(I),EE1(I),EE2(I),PRR(I),TOL,I=1,MAT)
                                                                    VER70051
  120 FORMAT(1H014X12HBILINEAR LAW/
                                                                    VER70052
     115X.30HMATERIAL----- [3/
                                                                     VER70053
     215X3CHMCDULUS OF ELASTICITY---- E12.4/
                                                                     VEK70054
     315X30HYIELO STRESS----- E12.4/
                                                                    VER70055
     415X30HPLASTIC MODULUS----- E12.4/
                                                                    VER70056
     515X30HPOISSON'S RATIO----- F8.4/
                                                                     VER70057
    615X30HERROR TOLERANCE----- F8.4)
                                                                     VER70058
  130 WRITE (6,140)NNUOE, NELEM, NOIV, NIT
140 FORMAT(1H014X30HND. OF NODES
                                                                     VER70059
                                         NNOOE =14/15X30HNO. OF ELEMVER70060
```

```
NELEM =14/15X30HNO. OF STEPS
                                                           NDIV = 14/15x30VER70061
     1ENTS
     2HNO. OF ITERATIONS/STEP NIT =14)
                                                                           VER70062
      DO 150 I=1.NBC
                                                                           VER70063
                                                                           VER70064
      DO 150 J=1.3
  150 BC(I,J)=0
                                                                           VER70065
      IC=1
                                                                           VER70066
      WRITE(6,160)
                                                                           VER70067
  160 FORMAT(25H0BOUNDARY CONDITION ARRAY/10H0 NODAL PT15X1HX23X1HY
                                                                           VER70068
     120X7HSLIDING/1H 14X4HCODE7X5HVALUE9X4HCODE7X5HVALUE9X4HCODE
                                                                           VER70069
                                                                           VER70070
C
                                                                           VER70071
C
   **** NODE COORDINATES AND BOUNDARY CONDITIONS ****
                                                                           VER70072
C
                                                                           VER70073
      DO 200 J=1,NNODE
                                                                           VER70074
      READ(5,170) K, I8CX, I8CY, IBCS, XCORD(K), Y(K), BC1,8C2, BC3
                                                                           VER70075
  170 FORMAT(415,5F10.0)
                                                                           VER70076
      IF(IBCX+IBCY+IBCS.NE.O) WRITE(6,180)K,IBCX,8C1,IBCY,BC2,IBCS,8C3 VER70077
  180 FORMAT(17,3X,3(18,1PE17.7))
                                                                           VER70078
      ICODE(K)=IBCS+10*IBCY+100*IBCX
                                                                           VER70079
      IF(BC1+BC2+BC3.EQ.O.) GO TO 200
                                                                           VER70080
      ICODE(K) = ICODE(K) + IC*1000
                                                                           VER70081
      BC(IC,1)=BC1
                                                                           VER70082
      BC(IC,2)=BC2
                                                                           VER70083
      BC(IC,3)=BC3
                                                                           VER70084
      IC = IC + 1
                                                                           VER70085
      IF(IC.LE.NBC)GO TO 200
                                                                           VER70086
      WRITE(6,190)
                                                                           VER70087
  190 FURMAT(54H) MORE THAN 29 NODES HAVE NON ZERO BOUNDARY CONDITIONS) VER70088
      GO TU 620
                                                                           VER70089
  200 CONTINUE
                                                                           VER70090
C
                                                                           VER70091
C
   **** ELEMENT PROPERTIES ****
                                                                           VER70092
C
                                                                           VFR70093
      READ(5,210)(K, I1(K), I2(K), I3(K), NTYPE(K), Z(K), J=1, NELEM)
                                                                           VER70094
  210 FURMAT(515,F10.0)
                                                                           VER70095
                                                                           VER70096
C
   **** LOADS ****
                                                                           VER70097
C
                                                                           VER70098
      N2=2*NNODE
                                                                           VER70099
      DO 220 K=1,N2
                                                                           VER70100
  220 F(K)=0
                                                                           VER70101
      IF(NLOAD.EQ.O) GO TO 250
                                                                           VER70102
      DO 230 K=1,NLOAD
                                                                           VER70103
  230 READ(5,240)J,F(2*J-1),F(2*J)
                                                                           VER70104
  240 FORMAT(15,2F10.0)
                                                                           VER70105
                                                                           VER70106
  250 CONTINUE
      WRITE(6,260)(K,XCURD(K),F(2*K-1), Y(K),F(2*K),ICODE(K),K=1,NNODE) VER70107
  260 FORMAT(10HO NODAL PT8X7HX-COORD8X7HX-FORCE8X7HY-COORD8X7HY-FORCE
                                                                           VER70108
     111X4HCODE//(4X, 13, 5X4F15.4, I15))
                                                                           VER70109
                                                                           VER70110
      WRIFE(6,270)
                                                          NODE 3
                                                                     ELEMENVER70111
  270 FORMAT(1H0///10X,90HELEMENT
                                       NODE 1
                                                 NODE 2
     1T TYPE
                  AREA OR THICK.
                                       MATERIAL TYPE,//)
                                                                           VER70112
      DO 300 K=1, NELEM
                                                                            VER70113
      IF(I3(K).EQ.O) WRITE(6,280) K, I1(K), I2(K), I3(K), Z(K), NTYPE(K)
                                                                           VER70114
      IF(I3(K).NE.O) WRITE(6,290) K,I1(K),I2(K),I3(K),Z(K),NTYPE(K)
                                                                            VER70115
  280 FORMAT( 6X,419,11X,3H8AR,E22.5,114)
                                                                           VER70116
  290 FORMAT(
               6X,4I9,11X,5HPLATE,E20.5,I14)
                                                                            VER70117
  300 CONTINUE
                                                                            VER70118
C
                                                                            VER70119
C
      INITIALIZATION
                                                                            VER70120
C
                                                                           VER70121
                                                                           VER70122
  310 XDIV=NDIV
```

```
GO TO(320,340,340), ILAW
                                                                            VER70123
  320 CONTINUE
                                                                            VER70124
      DO 330 I=1.MAT
                                                                            VER70125
                                                                            VER70126
      E=EE(I)
      E1=EE1(I)
                                                                            VER70127
      E2=EE2(I)
                                                                            VFR70128
      CC=E1/E
                                                                            VER70129
      G1=(7.0*E/3.0)**(1.0/E2)*E1**(1.0-1.0/E2)
                                                                            VER70130
      CALL TABLE(I)
                                                                            VER70131
  330 CONTINUE
                                                                            VER70132
  340 CONTINUE
                                                                            VER70133
                                                                            VER70134
   **** OETERMINE BANO WIDTH ****
                                                                            VER70135
                                                                            VER70136
      00 350 K=1, NELEM
                                                                            VER70137
      14(K)=13(K)
                                                                            VER70138
  350 IF(I3(K).EQ.0) JX(K,3)=JX(K,1)
                                                                            VER70139
      J = 0
                                                                            VER70140
      00 380 N=1, NELEM
                                                                            VER70141
      DO 380 I=1,3
                                                                            VER70142
      DO 370 L=1,3
                                                                            VER70143
      KK=IABS(JX(N,I)-JX(N,L))
                                                                            VER70144
      IF(KK-J)370,370,360
                                                                            VER70145
  360 J=KK
                                                                            VER70146
  370 CONTINUE
                                                                            VER70147
  380 CONTINUE
                                                                            VER70148
      MBAND=2*J+3
                                                                            VER70149
      IF(MBAND.GT.MAXBND) WRITE(6,390) MBAND
                                                                            VER70150
      IF (MBANO.GT.MAXBND) GO TO 10
                                                                            VER70151
  390 FORMAT(1H010X20HBAND WIOTH TOO LARGE5X6HMBAND=14)
                                                                            VER70152
      DO 400 I=1.NELEM
                                                                            VER 70153
  400 I3(I)=I4(I)
                                                                            VER70154
      00 410 I=1,N2
                                                                            VER70155
      00 410 J=1, MBANO
                                                                            VER70156
  410 B(I,J)=0.
                                                                            VER70157
                                                                            VER70158
      CALCULATION OF STIFFNESS MATRIX
C
                                                                            VER70159
C
                                                                            VER70160
      CALL STIFF
                                                                            VER70161
C
                                                                            VER70162
C
   **** REDUCE MATRIX ****
                                                                            VER70163
C
                                                                            VEK70164
      CALL SYMSOL(1)
                                                                            VER70165
C
                                                                            VER70166
C
   **** INCREMENT LOADS, ADD PLASTIC FORCES AND SOLVE FOR DISPLACEMENTS**VER70167
C
                                                                            VER70168
      DO 420 I=1, NELEM
                                                                            VER70169
      SET(1)=0
                                                                            VER70170
      SEF(1)=0
                                                                            VER70171
      EEP(I)=0
                                                                            VER70172
      EXPL(I)=0
                                                                            VER70173
      EYP(I)=0
                                                                            VER70174
  420 EXYP(I)=0
                                                                            VER70175
      KD=KSTART-1
                                                                            VER70176
      KU = K\Omega
                                                                            VER70177
      DU 430 I=1.N2
                                                                            VER70178
  430 FP(I)=0
                                                                            VER70179
      GO TO 490
                                                                            VER70180
  440 WRITE (6,450)KU,(I,FE(2*I-1),FE(2*I),X(2*I-1),X(2*I),I=1,NNODE)
                                                                            VFR70181
  450 FORMAT(1H120X38HFORCES AND DISPLACEMENTS FOR INCREMENT, 14//10X4HNOVER70182
     1DE5X7HX-FORCE8X7HY-FORCE9X8HX-01SPL.7X8HY-DISPL./(9X13,2F15.3,5X2EVER70183
     215.4 11
                                                                            VER70184
```

```
VER70185
      WRITE (6,460)XERR, KEL, IT
  460 FURMAT(13HOMAX. ERROR =F8.5,5X14HIN ELEMENT NO.14,5X17HNO. OF ITERVER70186
                                                                            VER70187
     1ATIONSI4)
  470 IF(MOD(KU, NPRNT))490,480,490
                                                                            VER70188
  480 CALL OUTPT
                                                                            VER70189
      IF(KU.EQ.KSTOP)GO TO 620
                                                                            VER70190
      GO TU 500
                                                                            VER70191
  490 [F(KO.EQ.KSTOP) CALL DUTPT
                                                                            VER70192
                                                                            VER70193
      IF(KU.EQ.KSTUP)GO TO 620
                                                                            VER70194
  500 KO=KO+IONE
                                                                             VER70195
      KU = KU + 1
                                                                            VER70196
      IF(KG-NDIV)510,510,620
  510 XKO=KO
                                                                            VER70197
                                                                            VER70198
      DO 520 I=1,N2
                                                                             VER70199
  520 FE(I)=XKG/XDIV*F(I)
                                                                            VER70200
      DO 530 K=1, NELEM
  530 SEF(K)=SET(K)
                                                                             VER70201
      IT = 0
                                                                             VER70202
  540 DO 570 I=1, NNODE
                                                                             VER70203
      IF(ICODE(I).EQ.0) GO TO 570
                                                                             VER70204
                                                                            VER70205
      CALL DCODE(ICODE, I, IBCS, IBCX, IBCY, IC, IX, IY, NBC)
                                                                             VER70206
      IF(IBCS.NE.1) GO TO 550
      ALF=EC(IC.3)
                                                                             VER70207
      FP(IX)=FP(IX)+ALF*FP(IY)
                                                                             VEK70208
      FP(IY)=0.
                                                                             VER70209
                                                                             VER70210
  550 DO 560 N=1,2
      IF(IFIX(N).NE.1) GO TO 560
                                                                             VER70211
                                                                             VER70212
      IR = IX + N - 1
                                                                             VER70213
      FP(IR)=0.
  560 CUNTINUE
                                                                             VER70214
                                                                             VER70215
  570 CUNTINUE
                                                                             VER70216
   **** SOLVE FOR DISPLACEMENTS ****
                                                                             VER70217
C
C
                                                                             VER70218
                                                                             VER70219
      DO 580 I=1.N2
                                                                             VER70220
  580 X(I)=FE(I)+FP(I)
                                                                             VER70221
      CALL SYMSOL(2)
                                                                             VER70222
C
                                                                             VER70223
C
      CALCULATE TOTAL STRAINS, STRESSES AND PLASTIC
         FURCES AND STRAINS FOR EACH ELEMENT
                                                                             VER70224
C
                                                                             VER70225
C
                                                                             VER70226
      DO 590 I=1,N2
                                                                             VER70227
  590 FP(I)=0
      XERR=0.0
                                                                             VER70228
                                                                             VER70229
      KEL = 0
                                                                             VER70230
      CALL STRAIN
                                                                             VER70231
C
   **** PICK LARGEST ERROR AND DETERMINE WHEN TO REITERATE ****
                                                                             VER70232
C
C
                                                                             VER70233
      IT = IT + 1
                                                                             VER70234
                                                                             VER70235
      IF(XERR-TOL)440,440,600
                                                                             VER70236
  600 IF(IT-NIT)540,610,610
                                                                             VER70237
  610 KO=NUIV
                                                                             VEK70238
      TUNED=0
                                                                             VER70239
      50 TU 440
                                                                             VER70240
  620 IF(IUNLD.EQ.3) GC TO 10
      IUNL D=0
                                                                             VER70241
                                                                             VER70242
      IUNE =-1
      KSTUP=0
                                                                             VER70243
                                                                             VER70244
      GO TO 440
                                                                             VER70245
      END
                                                                             ELM 0000
SIBFTC ELM
```

```
ELM 0001
      SUBROUTINE ELEM(M)
      COMMON/ADD/ EE(10), EE1(10), EE2(10), PRR(10)
                                                                             ELM 0002
      COMMON E,CC,G1,E2,PR,EPR,X21,Y21,X31,Y31,X32,Y32,XERR,
                                                                             ELM 0003
              N2, NELEM, KEL, ILAW, MAT, NBC,
                                                                             ELM 0004
                                                                             ELM 0005
              B(450,22),BC(30,3),TAB(101,20),IFIX(2),
     2
              X(450), XCORD(225), Y(225), ICODE(225),
                                                                             ELM 0006
     3
              FP(450), F(450),
                                                                             ELM 0007
              I1(400), I2(400), I3(400), NTYPE(400), Z(400), I4(400),
                                                                             ELM 0008
              SEF(400), SET(400), EEP(400), EXPL(400), EYP(400), EXYP(400),
                                                                            ELM 0009
             NNODE, MEAND
                                                                             FIM 0010
      DIMENSION XX(225)
                                                                             ELM 0011
      EQUIVALENCE (XCORD, XX)
                                                                             ELM 0012
      J1=I1(M)
                                                                             ELM 0013
      J2=12(M)
                                                                             ELM 0014
                                                                             ELM 0015
      J3 = I3(M)
      X21=XX(J2)-XX(J1)
                                                                             ELM 0016
      Y21=Y(J2)-Y(J1)
                                                                             ELM 0017
      IF(J3.EQ.0) GO TO 10
                                                                             FLM 0018
      Y32=Y(J3)-Y(J2)
                                                                             FLM 0019
                                                                              ELM 0020
      Y31 = Y(J3) - Y(J1)
      X32=XX(J3)-XX(J2)
                                                                              ELM 0021
                                                                             ELM 0022
      X31=XX(J3)-XX(J1)
                                                                             ELM 0023
      RETURN
   10 Y32=SQRT(X21**2+Y21**2)
                                                                             ELM 0024
                                                                             ELM 0025
                                                                             ELM 0026
      END
$IBFTC DCUD
                                                                              DC0D0000
                                                                              DCUD0001
CDCOD
      SUBRUUTINE DCODE(ICODE, I, IBCS, IBCX, IBCY, IC, IX, IY, NBC)
                                                                              DC0D0002
      DIMENSION ICODE(225)
                                                                             DC0D0003
                                                                             DC0D0004
      IBCS=MOD(ICODE(I),10)
      IBCX=MOD(ICODE(I), 1000)/100
                                                                              DC0D0005
                                                                              DCCD0006
      IBCY=MOD(ICODE(I),100)/10
                                                                              DC000007
      IC=MOD(ICODE(I),100000)/1000
                                                                              DC000008
      IX = 2 * I - 1
                                                                              DC0D0009
      IY = IX + 1
      IF(IC.EQ.O) IC=NBC
                                                                              DC0D0010
                                                                              DC000011
      RETURN
      END
                                                                              DC0D0012
$IBFTC PNEW
                                                                              PNEW0000
C2222
        PLASTIC STRAIN DETERMINATION
                                                                              PNEW0001
      SUBROUTINE PNEW1 (EEPK, EET, E, E1, E2)
                                                                              PNEW0002
      J = 1
                                                                              PNEW0003
      XU=EET
                                                                              PNEW0004
      XL=0
                                                                              PNEW0005
                                                                              PNEW0006
   10 EEPK=.5*(XL+XU)
   20 Y=EEPK+E1/E*EEPK**(1.0/E2)-EET
                                                                              PNEW0007
   30 YP=1.0+E1/E/E2*EEPK**(1.0/E2-1.0)
                                                                              PNEW0008
                                                                              PNEW0009
      IF(J-50)40,40,100
                                                                              PNEW0010
                                                                              PNEW0011
   40 IF(Y)50,100,60
   50 XL=EEPK
                                                                              PNEW0012
      GO TO 70
                                                                              PNEW0013
   60 XU=EEPK
                                                                              PNEW0014
   70 XT=EEPK-Y/YP
                                                                              PNEW0015
      IF(XU-XT)10,10,80
                                                                              PNEW0016
   80 IF(XT-XL)10,10,90
                                                                              PNEW0017
                                                                              PNEW0018
   90 EEPK=XT
      DIFF=ABS(Y/YP/EEPK)
                                                                              PNEW0019
      IF(D[FF-.00001)100,100,20
                                                                              PNEW0020
  100 RETURN
                                                                              PNEW0021
      END
                                                                              PNEW0022
```

```
PLST0000
$IBFTC PLSTR
                                                                           PLST0001
         STRAIN-PLASTIC STRAIN TABLE
CTABL
      SUBROUTINE TABLE(K)
                                                                           PLST0002
                                                                           PLST0003
      COMMDN/ADD/ EE(10), EE1(10), EE2(10), PRR(10)
      PLST0004
              N2, NELEM, KEL, ILAW, MAT, NBC,
                                                                           PLST0005
                                                                           PLST0006
     2
              B(450,22), BC(30,3), TAB(101,20), IFIX(2),
              X(450), XCDRD(225), Y(225), ICODE(225),
                                                                           PLST0007
     3
                                                                           PLST0008
     4
              FP(450),F(450),
     5
               I1(400), I2(400), I3(400), NTYPE(400), Z(400), I4(400),
                                                                           PLST0009
               SEF(400), SET(400), EEP(400), EXPL(400), EYP(400), EXYP(400),
                                                                           PLST0010
     6
                                                                           PLST0011
          NNODE, MBAND
                                                                           PLST0012
      II2=2*K
      II1=I12-1
                                                                           PLST0013
      TAB(1, II1)=0-
                                                                            PLST0014
                                                                            PLST0015
      TAB(1, [[2] = 0.
      DO 20 I=1,101
                                                                           PLST0016
      IF(I-1)20,20,10
                                                                            PLST0017
   10 TAB(I, III) = FLDAT(I-1) * CC/5.
                                                                            PLST0018
                                                                           PLST0019
      EET=TAB(I, III)
                                                                            PLST0020
      CALL PNEW1 (EEPK, EET, E, G1, E2)
      TAB(I, II2)=EEPK
                                                                            PLST0021
                                                                            PLST0022
   20 CDNTINUE
                                                                            PLST0023
      RETURN
      END
                                                                            PLST0024
$IBFTC STIF
                                                                            STIF0000
                                                                            STIF0001
      SUBRDUTINE STIFF
                                                                            STIF0002
      CDMMDN/ADD/ EE(10), EE1(10), EE2(10), PRR(10)
                                                                            STIF0003
      COMMON E,CC,G1,E2,PR,EPR,X21,Y21,X31,Y31,X32,Y32,XERR,
               N2, NELEM, KEL, ILAW, MAT, NBC,
                                                                            STIF0004
     1
                                                                            STIF0005
     2
               B(450,22), BC(30,3), TAB(101,20), IFIX(2),
               X(450), XCDRD(225), Y(225), ICDDE(225),
                                                                            ST IF 0006
     3
                                                                            STIF0007
               FP(450),F(450),
     5
               I1(400), I2(400), I3(400), NTYPE(400), Z(400), I4(400),
                                                                            STIF0008
               SEF(400), SET(400), EEP(400), EXPL(400), EYP(400), EXYP(400),
                                                                           STIF0009
     6
                                                                            STIF0010
          NNDDE . MBAND
      DIMENSION FFP(2), INDDE(3), LNODE(6), DSK(6,6)
                                                                            STIF0011
      EQUIVALENCE (IFIX(1), IBCX), (IFIX(2), IBCY)
                                                                            STIF0012
                                                                            STIF0013
      EQUIVALENCE(INODE(1),J1),(INODE(2),J2),(INODE(3),J3)
                                                                            STIF0014
      DO 80 M=1.NELEM
      J1= I1 (M)
                                                                            STIF0015
                                                                            STIF0016
      J2=I2(M)
                                                                            STIF0017
      J3=I3(M)
                                                                            ST1F0018
      CALL ELEM(M)
                                                                            STIF0019
      NTY=NTYPE(M)
                                                                            ST1F0020
      E=EE(NTY)
                                                                            STIF0021
      PR=PRR(NTY)
      IF(J3.EQ.0) GO TO 30
                                                                            ST IF0022
      IF(NTY.LE.MAT) GO TD10
                                                                            STIF0023
                                                                            ST1F0024
      GD TO 160
                                                                            STIF0025
   **** STIFFNESS MATRIX CALCULATIONS FDR TRIANGULAR ELEMENTS ****
                                                                            STIF0026
C
                                                                            STIF0027
   10 JMAT=6
                                                                            STIF0028
                                                                            STIF0029
      AE=E*Z(M)
      A123=X21*Y31-X31*Y21
                                                                            STIF0030
                                                                            STIF0031
      A123=ABS(A123)
      ET1=AE/(2.0*A123*(1.0-PR**2))
                                                                            ST IF 0032
                                                                            STIF0033
      ET2=AE/(4.0*A123*(1.0+PR))
                                                                            ST1F0034
                                    +ET2*X32**2
      DSK(1,1) = ET1*Y32**2
                                   -ET2*Y32*X32
                                                                            STIF0035
      DSK(2,1)=-ET1*PR*Y32*X32
                                                                            STIF0036
      DSK(2,2) = ET1*X32**2
                                   +ET2*Y32**2
```

```
DSK(3.1)=-ET1*Y31*Y32
                                   -FT2*X32*X31
                                                                           ST1F0037
      DSK(3,2)= ET1*PR*Y31*X32
                                   +ET2*Y32*X31
                                                                           STIF0038
      DSK(3,3)=ET1*Y31**2
                                  +FT2+X31++2
                                                                           ST1F0039
      DSK(4,1)= ET1*PR*Y32*X31
                                   +ET2*Y31*X32
                                                                           STIF0040
      DSK(4,2)=-ET1*X31*X32
                                   -ET2*Y31*Y32
                                                                           STIFOC41
      DSK(4,3)=-ET1*PR*Y31*X31
                                   -ET2*Y31*X31
                                                                           STIF0042
      DSK(4,4)= ET1*X31**2
                                   +ET2*Y31**2
                                                                           ST1F0043
      DSK(5.1)= ET1*Y21*Y32
                                   +FT2*X32*X21
                                                                           STIF0044
      DSK(5.2)=-FT1*PR*Y21*X32
                                  -ET2*Y32*X21
                                                                           ST1F0045
      DSK(5,3) = -ET1 + Y31 + Y21
                                   -ET2*X31*X21
                                                                           ST1F0046
      DSK(5+4)= ET1*PR*Y21*X31
                                   +ET2*Y31*X21
                                                                           ST1F0047
      DSK(5,5)= ET1*Y21**2
                                   +ET2*X21**2
                                                                           STIF0048
      DSK(6,1)=-ET1*PR*Y32*X21
                                   -ET2*Y21*X32
                                                                           STIF0049
      DSK(6,2)= ET1*X32*X21
                                   +ET2*Y21*Y32
                                                                           ST1F0050
      DSK(6.3) = ET1*PR*Y31*X21
                                   +ET2*Y21*X31
                                                                           ST1F0051
      DSK(6,4) = -ET1 * X31 * X21
                                   -ET2*Y21*Y31
                                                                           ST1F0052
                                   -ET2*Y21*X21
      DSK(6.5)=-ET1*PR*Y21*X21
                                                                           STIF0053
      DSK(6,6)= ET1*X21**2
                                   +ET2*Y21**2
                                                                           ST1F0054
      DO 20 I=1, JMAT
                                                                           STIE0055
      DO 20 J=I.JMAT
                                                                           ST1F0056
   20 DSK(I,J)=DSK(J,I)
                                                                           ST1F0057
      GO TO 50
                                                                           ST1F0058
C
                                                                           ST1F0059
C
   **** STIFFNESS MATRIX CALCULATIONS FOR BARS ****
                                                                           STIF0060
C
                                                                           STIF0061
   30 ET1=Z(M)*E/Y32**3
                                                                           STIF0062
      FFP(1)=X21
                                                                           ST1F0063
      FFP(2)=Y21
                                                                           STIF0064
      DO 40 I=1,2
                                                                           ST1F0065
      DO 40 J=1,2
                                                                           ST1F0066
      DSK(I,J)=ET1*FFP(I)*FFP(J)
                                                                           ST1F0067
      DSK(1+2,J)=-DSK(I,J)
                                                                           STIF0068
      DSK(I,J+2)=-DSK(I,J)
                                                                           ST1F0069
   40 DSK(I+2,J+2)=DSK(I,J)
                                                                           STIF0070
      IMAT=4
                                                                           ST1F0071
C
                                                                           ST1F0072
C
   **** INCORPORATION OF ELEMENT MATRICES INTO
                                                                           ST1F0073
C
                      COMPLETE STIFFNESS MATRIX ****
                                                                           STIF0074
C
                                                                           ST1F0075
   50 JMAT2=JMAT/2
                                                                           ST 1F0076
      K = 0
                                                                           STIF0077
      DO 60 I=1, JMAT2
                                                                           STIF0078
      DO 60 J=1,2
                                                                           ST1F0079
      K=K+1
                                                                           ST1F0080
   60 LNODE(K)=2*INODE(I)-2+J
                                                                           ST1F0081
      DO 80 I=1,JMAT
                                                                           STIF0082
      KI=LNODE(I)
                                                                           ST1F0083
      DO 80 J=1.JMAT
                                                                           STIF0084
      KJ=LNODE(J)
                                                                           STIF0085
      IF(KJ-KI)80,70,70
                                                                           STIF0086
   70 K=KJ-KI+1
                                                                           STIF0087
      B(KI,K)=B(KI,K)+DSK(I,J)
                                                                           STIF0088
   80 CONTINUE
                                                                           STIF0089
C
                                                                           ST1F0090
C
   **** DISPLACEMENT BOUNDARY CONDITIONS ****
C
                                                                           ST1F0092
      DO 150 I=1, NNODE
                                                                           ST1F0093
      IF(ICODE(I).EQ.C) GO TO 150
                                                                           ST1F0094
      CALL DCODE(ICODE, I, IECS, IBCX, IBCY, IC, IX, IY, NBC)
                                                                           STIF0095
      IF(IBCS.NE.1) GO TO 110
                                                                           STIF0096
     ALF=BC(IC,3)
                                                                           ST1F0097
      B(IX.1)=B(IX.1)+ALF*(ALF*(B(IY.1)+1.)+2.*B(IX.2))
                                                                           STIF0098
```

```
B(IX,2) =- ALF
                                                                            STIF0099.
                                                                            STIF0100
      B(IY,1)=1.
      F(IX)=ALF*F(IY)+F(IX)
                                                                            STIF0101
      F(IY)=0
                                                                            STIF0102
                                                                            STIF0103
      KL=IX-MBAND+2
      KU=IX+MBAND-1
                                                                            STIF0104
      IF(KL.LT.1) KL=1
                                                                            STIF0105
      IF(KU.GT.N2)KU=N2
                                                                            STIF0106
      DO 100 K=KL,KU
                                                                            STIF0107
      IF(K.EQ.IX.UR.K.EQ.IY) GO TO 100
                                                                            ST1F0108
                                                                            STIF0109
      IF(K.GT.IY) GU TO 90
      L=[X-K+1
                                                                            STIF0110
      B(K,L)=B(K,L)+ALF*B(K,L+1)
                                                                            STIF0111
                                                                            STIF0112
      B(K.L+1)=0.
      GO TO 100
                                                                            STIF0113
   90 L=K-IX+1
                                                                            STIF0114
                                                                            STIF0115
      B(IX,L)=B(IX,L)+ALF*B(IY,L-1)
                                                                            STIF0116
      B(IY,L-1)=C.
  100 CONTINUE
                                                                            STIF0117
  110 DU 140 N=1.2
                                                                            STIF0118
      IF(IFIX(N).NE.1) GO TO 140
                                                                            STIF0119
                                                                            STIF0120
      IR=IX+N-1
      ML=IR-MBAND+1
                                                                            ST1F0121
      MU=IR+MBAND-1
                                                                            STIF0122
      IF(ML.LT.1) ML=1
                                                                            STIF0123
      IF(MU.GT.N2)MU=N2
                                                                            STIF0124
      DO 130 M=ML, MU
                                                                            STIF0125
                                                                            STIF0126
      L=IK-M+1
                                                                            ST IF0127
      IF(L.LE.1) GG TO 120
      F(M)=F(M)-B(M,L)*BC(IC,N)
                                                                            STIF0128
                                                                            STIF0129
      B(M.1)=0.
                                                                            STIF0130
      GO TO 130
  120 L=M-IR+1
                                                                            STIF0131
      F(M)=F(M)-B(IR,L)*BC(IC,N)
                                                                            STIF0132
                                                                            STIF0133
      B(IR,L)=0.
  130 CONTINUE
                                                                            STIF0134
      B(IR,1)=1.
                                                                            STIF0135
                                                                            STIF0136
      F(IR)=BC(IC,N)
                                                                            STIF0137
  140 CONTINUE
  150 CONTINUE
                                                                            STIF0138
      RETURN
                                                                            STIF0139
  160 WRITE(6,170) M
                                                                            ST1F0140
  170 FORMAT(1H010X32HINVALID ELEMENT CODE ELEMENT NO.14)
                                                                            ST1F0141
                                                                            STIF0142
      STOP
      END
                                                                            STIF0143
C
                                                                            STIF0144
SIBFTC SYMSL
                                                                            SYMSOOOO
      SUBROUTINE SYMSOL(KKK)
                                                                            SYMS0001
      COMMON/ADD/ EE(10), EE1(10), EE2(10), PRR(10)
                                                                            SYMS0002
      COMMON E,CC,G1,E2,PR,EPR,X21,Y21,X31,Y31,X32,Y32,XERR,
                                                                            SYMS0003
     1
               N2, NELEM, KEL, ILAW, MAT, NBC,
                                                                            SYMS0004
                                                                            SYMS0005
               8(450,22), BC(30,3), TAB(101,20), IFIX(2),
                                                                            SYMS0006
               X(450), XCORD(225), Y(225), ICODE(225),
     3
                                                                            SYMS0007
     4
               FP(450),F(450),
               I1(400).I2(400).I3(400).NTYPE(400).Z(400).I4(400).
                                                                            80008MYS
     5
               SEF(400), SET(400), EEP(400), EXPL(400), EYP(400), EXYP(400),
                                                                            SYMSOOO9
     6
     7
          NNODE, MBAND
                                                                            SYMS0010
                                                                            SYMS0011
C
                                                                            SYMS0012
      NN=N2
                                                                            SYMS0013
      MM=MBAND
      GO TO (10,60), KKK
                                                                            SYMS0014
```

```
SYMS0015
C
C
      REDUCE MATRIX
                                                                               SYMS0016
C
                                                                               SYMS0017
   10 DO 50 N=1,NN
                                                                               SYMS0018
                                                                               SYMS0019
      DO 40 L=2.MM
                                                                               SYMS0020
      C=B(N,L)/B(N,1)
                                                                               SYMS0021
      I = N + I - 1
      IF(NN-I) 40,20,20
                                                                               SYMS0022
                                                                               SYMS0023
   20 .1=0
      DO 30 K=L, MM
                                                                               SYMS0024
                                                                               SYMS0025
      J=J+1
                                                                               SYMS0026
   30 B(I,J)=B(I,J)-C*B(N,K)
                                                                               SYMS0027
   40 B(N,L)=C
                                                                               SYMS0028
   50 CONTINUE
      GO TO 130
                                                                               SYMS0029
C
                                                                               SYMS0030
      REDUCE VECTOR
                                                                               SYMS0031
C
C
                                                                               SYMS0032
   60 DO 80 N=1,NN
                                                                               SYMS0033
      DO 70 L=2, MM
                                                                               SYMS0034
                                                                               SYMS0035
      I=N+L-1
      IF(NN-I) 80,70,70
                                                                               SYMS0036
                                                                               SYMS0037
   70 \times (I) = X (I) - B(N, L) * X (N)
   80 \times (N) = \times (N)/8(N,1)
                                                                               SYMS0038
                                                                               SYMS0039
C
C
      BACK SUBSTITUTION
                                                                               SYMS0040
C
                                                                               SYMS0041
      N=NN
                                                                               SYMS0042
   90 N=N-1
                                                                               SYMS0043
                                                                               SYMS0044
       IF(N) 100,130,100
                                                                               SYMS0045
  100 DO 120 K=2,MM
                                                                               SYMS0046
      L=N+K-1
       IF(NN-L) 120,110,110
                                                                               SYMS0047
  110 X (N)=X (N)-B(N,K)*X (L)
                                                                               SYMS0048
                                                                               SYMS0049
  120 CONTINUE
      GO TO 90
                                                                               SYMS0050
                                                                               SYMS0051
  130 RETURN
                                                                               SYMS0052
                                                                               SYMS0053
C
                                                                               SYMS0054
      END
$IBFTC STRN
                                                                               STRN0000
       SUBROUTINE STRAIN
                                                                               STRN0001
      COMMON/ADD/ EE(10), EE1(10), EE2(10), PRR(10)
                                                                               STRN0002
      COMMON E,CC,G1,E2,PR,EPR,X21,Y21,X31,Y31,X32,Y32,XERR,
                                                                               STRN0003
                                                                               STRN0004
      1
               N2, NELEM, KEL, ILAW, MAT, NBC,
               8(450,22),8C(30,3),TAB(101,20),IFIX(2),
                                                                               STRN0005
      2
                                                                               STRN0006
               X(450), XCORD(225), Y(225), ICODE(225),
      3
               FP(450), F(450),
                                                                               STRN0007
      4
                11(400), 12(400), 13(400), NTYPE(400), Z(400), 14(400),
      5
                                                                                STRN000B
                SEF(400), SET(400), EEP(400), EXPL(400), EYP(400), EXYP(400),
                                                                               STRN0009
      6
              NNODE, MBAND
                                                                                STRN0010
      DO 130 K=1, NELEM
                                                                               STRN0011
                                                                               STRN0012
      J1=2*I1(K)-1
       J2=2*[1(K)
                                                                                STRNOG13
       J3=2*[2(K)-1
                                                                                STRNOC14
                                                                                STRN0015
       J4=2*I2(K)
                                                                                STRN0016
       J5=2*I3(K)-1
                                                                                STRN0017
       J6=2*13(K)
       CALL ELEM(K)
                                                                                STRN0018
                                                                                STRN0019
       NTY=NTYPE(K)
                                                                               STRN0020
       F=FF(NTY)
                                                                               STRN0021
      E1=EE1(NTY)
```

```
E2=EE2( NTY)
                                                                 STRN0022
     CC=E1/E
PR=PRR( NTY)
                                                                 STRN0023
                                                                 STRN0024
     IF(ILAW.EQ.1)MDM moGl=(7.*E/3.)**(1./E2)*E1**(1.-1./E2) = 1 STRN0025
     IF(ILAW.GT.1) G1=E1
                                                                 STRN0026
EPR=E/(1.6-PR*PR)
                                                                 STRN0027
     IF(I3(K).EQ.0) GO TO 60 and let W denote the space orthogonal STRN0028
C L **** TRIANGULAR ELEMENTS CALCULATIONS V **** SUfficient condition that (STRN0030
C
10 A123=X21*Y31-X31*Y21
     SN=A123/ABS(A123)
                                                                 STRN0033
     EXT = (-Y32 + X(J1) + Y31 + X(J3) - Y21 + X(J5))/A123
  EYT=( X32*X(J2)-X31*X(J4)+X21*X(J6))/A123
     EXYT = (X32 + X(J1) - Y32 + X(J2) - X31 + X(J3) + Y31 + X(J4)
+X21*X(J5)-Y21*X(J6))/A123
     EXE=EXT-EXPL(K)
                                                                 STRN0038
     EYE=EYT-EYP(K)
                                                                 STRN0039
 EXYE=EXYT-EXYP(K) 2 Y IS the procedure assistance of the
                                                                 STRNOOAO
     SX=EPR*(EXE+PR*EYE)
     SY=EPR*(EYE+PR*EXE)
     SE=SORT(SX**2-SX*SY+SY**2+3.0*SXY**2)
 - CRIT=ABS(SE)-SEF(K), and deline
     IF(CRIT)40,40,20
  20 EET=SE/E+EEP(K)
     CALL STRSTN(EET, EEPK, SETK, NTY)
     DEEP=EEPK-EEP(K)
                                                                 STRN0049
  30 EEP(K)=SEPK
                                                                 STRN0050
                                                                 $TRN0051
     SET(K)=SETK
     EXPL(K) = DEEP/SE*(SX-SY/2.0) + EXPL(K)
     EYP(K)=DEEP/SE*(SY-SX/2.G)+EYP(K)
 EXYP(K)=3.0*DEEP/SE*SXY+EXYP(K)
     ERR=E*DEEP/SE
     ERR=ABS(ERR)
     GO TO 50 Indeposite MIM model a repealure of particles as
40 ERR=C.0
  50 CONTINUE
                                                                 STRN0059
     Q1=E+Z(K)/(1.0-PR++2)/2.0+SN
                                                                 STRN0060
     Q2=E*Z(K)/(1.0+PR)/4.0*SN
                                                                  STRN0061
EXPT=EXPL(K)
     EYPT=EYP(K)
     EXYPT=EXYP(K)
  FP(J1)=-Q1*Y32*EXPT-Q1*Y32*PR*EYPT+Q2*X32*EXYPT+FP(J1) STRNO065
     FP(J2)= Q1*X32*PR*EXPT+Q1*X32*EYPT-Q2*Y32*EXYPT+FP(J2)
                                                                  STRN0066
     FP(J3) = U1*Y31*EXPT+U1*Y31*PR*EYPT+U2*X31*EXYPT+FP(J3)
                                                            STRN0067
     FP(J4)=-01*X31*PR*EXPT-Q1*X31*EYPT+Q2*Y31*EXYPT+FP(J4)
                                                                  STRN0068
     FP(J5) = -01 + Y21 + EXPT - 01 + Y21 + PR + EYPT + Y2 + X21 + EXYPT + FP(J5)
                                                                  STRN0069
                                                                 STRN0070
     FP(J6) = Q1 * X 21 * PR * EXPT + Q1 * X 21 * EYPT - Q2 * Y 21 * EXYPT + FP(J6)
GO TG 110
                                                                 STRN0071
        necessity: Let g = W , 1.e. g W , ter some value at = ISTRN0072
  **** BAR CALCULATIONS ****
C
                                                  Lemma . . . There STRN0074
Cupi
   60 EET=(X21*(X(J3)-X(J1))+Y21*(X(J4)-X(J2)))/Y32**2
                                                                  STRN0075
     STRN=ABS(EET-EXPL(K))
     SIGN=(EET-EXPL(K))/STRN A L ta the precewise estimation
                                                                  STRN0077
                                                                  STRN0078
     SE=E*STRN
GRIT=SE-SEF(K)) with times range in a constraint of the EET=STRN+EEP(K)
                                                                  STRN0079
                                                                  STRN0080
     IF(CRIT)90,90,70
 70 CONTINUE
     CALL STRSTN(EET, EEPK, SETK, NTY)
                                                                  STRN0083
```

```
STRN0084
 80 EEP(K)=EEPK

SET(K)=SETK WITH TESPECT TO (H) IS THAT

EXPL(K)=EXPL(K)+SIGN*DEEP
                                                                  STRN0085
                                                                  STRN0086
                                                                  STRN0087
     ERR=E*DEEP/SE
                                                                  STRN0088
                                                                  STRN0090
     GO TO 100
  90 ERR=0.0
                                                                  STRN0091
                                                                  STKN0092
 100 CONTINUE
     EXPT=EXPL(K)
                                                                  STRN0093
     Q1=E*Z(K)/Y32
                                                                  STRN0094
     FP(J1)=FP(J1)-Q1*X21*EXPT
                                                                  STRN0095
  FP(J3)=FP(J3)+Q1*X21*EXPT
     FP(J4)=FP(J4)+U1*Y21*EXPT
                                                                   STRN0099
 110 IF(ERR-XERR)130,130,120
                                                                  STRN0100
 120 XERR=ERR
                                                   THE STANDIOL
     KEL=K
 130 CONTINUE
                                                                   STRN0102
                                                  STRN0103
     RETURN
     END
$IBFTC STRST
                                                                   STRSOOOD
     SUBROUTINE STRSTN(EET, EEPK, SETK, NTY)
                                                                   STRS0001
     COMMON/ADD/ EE(10), EE1(10), EE2(10), PRR(10)
     COMMON E,CC,G1,E2,PR,EPR,X21,Y21,X31,Y31,X32,Y32,XERR,
                                                                   STRS0003
            N2, NELEM, KEL, ILAW, MAT, NBC,
                                                                   STRS0004
    1
            8(450,22),8C(30,3),TA8(101,2C),IFIX(2),
                                                                   STRS0005
    2
    3
            X(450), XCORD(225), Y(225), ICUDE(225),
                                                                   STRS0006
                                                                   STKS0007
    4
            FP(450),F(450),
            I1(400), I2(400), I3(400), NTYPE(400), Z(400), I4(400),
                                                                   STRS0008
    5
            SEF(400), SET(400), EEP(400), EXPL(400), EYP(400), EXYP(400), STRS0009
    6
        NNODE, MBAND
                                                                   STRS0010
     GO TU(10,50,60), ILAW
                                                                   STKS0011
  10 J=5.0*EET/CC+1.0
                                                                   STRS0012
                                                                   STRS0013
     NT2=2*NTY
     NT1=NT2-1
                                                                   STRS0014
     IF(J-101)20,30,30
                                                                   STRS0015
20 EEPK=TAB(J,NT2)+(TAB(J+1,NT2)-TAB(J,NT2))+(EET-TAB(J,NT1))/
                                                                   STRS0016
    1(TAB(J+1,NT1)-TAB(J,NT1))
                                                                   STRS0017
     GO TO 40 Blocks III
  30 CALL PNEW1 (EEPK, EET, E, G1, E2)
                                                                   STRS0019
  40 SETK=G1*EEPK**(1.0/E2)
                                                                   STRS0020
                                                                   STRS0021
     RETURN
50 SETK=E*EET/(1.+(ABS(E*EET/G1))**E2)**(1./E2)

EEPK=EET-SETK/E

STRS0022

STRS0023
     RETURN
                                                                   STRS0024
Sti60 EC=GIVEat the four row brocks (I - IV) above constitut
                                                                   STRS0025
     IF(EET-EC)70,70,80
Sys70e EEPK=0.esponse V., while the four column backs I..
                                                            STRS0028
                                                                   STRS0029
     RETURN
  80 EEPK = EET-EC TO LITE TO THE TOTAL EN SUPPOSE ENAL EN PAR STRSOO30
     SETK=G1+E2*EEPK
                                                                   STRS0031
homogeRETURN with respect to V<sub>1</sub>, and the column blocks are now lone, a STRS0033
$18FTC OTPUT
                                                               01PU0002
            OUTPUT SUBROUTINE TOWN OF the observation matrix
     SUBROUTINE OUTPT
SUBROUTINE OUTPT

COMMON/ADD/ EE(10),EE1(10),EE2(10),PRR(10)
COMMON E,CC,G1,E2,PR,EPR,X21,Y21,X31,Y31,X32,Y32,XERR,
                                                                   OTPU0003
                                                                OTPU0004
the for one NN2, NELEM, KEL, ILAW, MAT, NBC,
                                                                  OTPU0005
            B(450,22),BC(30,3),TAB(101,20),IFIX(2),
                                                                  OTPU0006
```

```
X(450), XCORD(225), Y(225), ICODE(225),
                                                                             OTPU0007
     3
               FP(450),F(450),
     4
                                                                             0TPU0008
     5
               I1(400), I2(400), I3(400), NTYPE(400), Z(400), I4(400),
                                                                             OTPU0009
     6
               SEF(400),SET(400),EEP(400),EXPL(400),EYP(400),EXYP(400),
                                                                             OTPU0010
     7
             NNODE, MBAND
                                                                             OTPU0011
      1 = 0
                                                                             OTPU0012
      DO 70 K=1, NELEM
                                                                             OTPU0013
                                                                             OTPU0014
   **** TRIANGULAR ELEMENT CALCULATIONS ****
                                                                             OTPU0015
C
C
                                                                             OTPU0016
      NTY=NTYPE(K)
                                                                             OTPU0017
                                                                             OTPU0018
      E=EE(NTY)
      PR= PRR(NTY)
                                                                             OTPU0019
      EPR=E/(1.-PR*PR)
                                                                             OTPU0020
      IF(13(K).EQ.O) GO TO 70
                                                                             OTPU0021
   10 CALL ELEM(K)
                                                                             OTPU0022
      A123=X21*Y31-X31*Y21
                                                                             OTPU0023
                                                                             OTPU0024
      J1=2*I1(K)-1
                                                                             OTPU0025
      J2=2*I1(K)
      J3 = 2 * I2(K) - 1
                                                                             OTPU0026
      J4=2*12(K)
                                                                             OTPU0027
      J5=2*[3(K)-1
                                                                             OTPU0028
      J6=2*[3(K)
                                                                             OTPU0029
      FXT = (-Y32 * X(J1) + Y31 * X(J3) - Y21 * X(J5))/A123
                                                                             OTPU0030
      EYT=(X32*X(J2)-X31*X(J4)+X21*X(J6))/A123
                                                                             OTPU0031
      EXYT = (X32 * X(J1) - Y32 * X(J2) - X31 * X(J3) + Y31 * X(J4)
                                                                             OTPU0032
          +X21*X(J5)-Y21*X(J6))/A123
                                                                             OTPU0033
      EXE=EXT-EXPL(K)
                                                                             OTPU0034
      EYE=EYT-EYP(K)
                                                                             OTPU0035
                                                                             OTPU0036
      EXYE=EXYT-EXYP(K)
                                                                             OTPU0037
      SX = EPR*(EXE+PR*EYE)
      SY=EPR*(EYE+PR*EXE)
                                                                             OTPU0038
      SXY=E/(1.0+PR)*EXYE/2.0
                                                                             OTPU0039
      PE2=SQRT((.5*(SX-SY))**2+SXY**2)
                                                                             OTPU0040
      PHI=.5*ATAN2((-2.0*SXY),(SX-SY))*57.29578
                                                                             OT PHON41
      PH2=.5*ATAN2((-EXYT),(EXT-EYT))*57.29578
                                                                             OTPU0042
      PS1=.5*(SX+SY)
                                                                             OTPU0043
      SIGE1=PS1+PE2
                                                                             OTPU0044
                                                                             OTPU0045
      SIGE2=PS1-PE2
                                                                             OTPU0046
      PST1=.5*(EXT+EYT)
                                                                             OTPU0047
      PET2=SGRT((.5*(EXT-EYT))**2+EXYT**2/4.0)
                                                                             OTPU0048
      STRE1=PST1+PET2
                                                                             OTPU0049
      STRE2=PST1-PET2
                                                                             OTPU0050
      PET2=2.0*PET2
      N1 = [1(K)]
                                                                             OTPU0051
      N2=12(K)
                                                                             OTPU0052
                                                                             OTPU0053
      N3 = I3(K)
                                                                             OTPU0054
      XC=XCORD(N1)+(X21+X31)/3.0
      YC=Y(N1)+(Y21+Y31)/3.0
                                                                             OTPU0055
      EPE=2.*SQRT((EXPL(K)**2+EXPL(K)*EYP(K)+EYP(K)**2+EXYP(K)**2/4.)/3.0TPU0056
                                                                             OTPU0057
     1)
                                                                             OTPU0058
      SE=SURT(SX**2-SX*SY+SY**2+3.*SXY**2)
                                                                             OTPU0059
      1 = 1 + 1
                                                                             OTPU0060
      IF(MUD(L-1,14))30,20,30
   20 WRITE (6,40)
                                                                             OTPU0061
   30 WRITE(6,50)K,XC,YC,SX,SY,SXY,SIGE1,SIGE2,PE2,PHI,PH2,EXT,EYT,
                                                                           EXOTPU0062
                                                                             OTPU0063
     1YT, STRE1, STRE2, PET2
   40 FORNAT(9H1EL. NO./5X11HCOORDINATES28X33HS T R E S S E S / S T R A OTPUO064
                      PHI7X1HX8X1HY6X9H
                                           TAU-XX6X9H
                                                         TAU-YY6X9H
                                                                       TAU-XOTPU0065
     11 N S /8H
     2Y8X7HMAXIMUM8X7HMINIMUM6X9HMAX SHEAR )
                                                                             OTPU0066
   50 FORMAT(1H017,0PF8.3,F9.3,1P6E15.4/1H 0PF7.2,F8.2,9X1P6E15.4)
                                                                             OTPU0067
                                                                             OTPU0068.
      WRITE(6,60) SE, EPE
```

```
60 FORMAT(1H 23H**** EFFECTIVE STRESS=E12.5,23H**** EFFECTIVE STRAIOTPU0069
     1N=E12.5)
                                                                             OTPU0070
   70 CONTINUE
                                                                             OTPU0071
C
                                                                             OTPU0072
   **** BAR CALCULATIONS ****
                                                                             OTPU0073
C
C
                                                                             OTPU0074
                                                                             OTPU0075
      0 = 1
      DO 120 K=1.NELEM
                                                                             OTPU0076
                                                                             OTPU0077
      NTY=NTYPE(K)
      E=EE( NTY)
                                                                             OTPU0078
      PR=PRR( NTY)
                                                                             OTPU0079
      J1=2*I1(K)-1
                                                                             OTPU0080
      J2=2*I1(K)
                                                                             OTPU0081
                                                                             OTPU0082
      J3=2*I2(K)-1
      J4=2*12(K)
                                                                             OTPU0083
      IF(I3(K).NE.O) GO TO 120
                                                                             OTPU0084
   80 CALL ELEM(K)
                                                                             OTPU0085
      EET=(X21*(X(J3)-X(J1))+Y21*(X(J4)-X(J2)))/Y32**2
                                                                             OTPU0086
      SE=E*(EET-EXPL(K))
                                                                             OTPU0087
                                                                             OTPU0088
      SEMZK=SE*Z(K)
                                                                             OTPU0089
      K1=I1(K)
      K2=12(K)
                                                                             OTPU0090
                                                                             OTPU0091
      IF(J)100,90,100
   90 WRITE (6,130)
                                                                             OTPU0092
      J=1
                                                                             OTPU0093
  100 CONTINUE
                                                                             OTPU0094
  110 WRITE(6,140)K,K1,K2,SE,EET,SEMZK
                                                                             OTPU0095
  120 CONTINUE
                                                                              OTPU0096
  130 FORMAT(9HOBAR NO. 6X10HNODE NOS. 8X7HSTRESS 8X7HSTRAIN,4X,
                                                                             OTPU0097
     113HMEMBER FURCES)
                                                                             OTPHIOO98
  140 FORMAT(1HO 318,2E15.5,2X,E15.5)
                                                                              OTPU0099
      RETURN
                                                                             OTPU0100
                                                                             OTPU0101
      END
$DATA
   NONLINEAR TRUSS PROC. ASCE DEC. 1965 ONE MATERIAL RAMBERG OSGOOD LAW
            1
                              22 30
   6 10
                  1
                      1
 0.10000000E+05 40.50000
                               0.3
                                          7.0
        20
                                    .01
   10
              1
                    1
                        10
                               1
               1
    1
          1
    2
                         30.
    3
                         60.
    4
          1
               1
                                    40.
    5
                         30.
                                   40 -
                         60.
                                    40.
    6
    1
          4
               5
                    0
                          1
                               . 25
    2
          4
               2
                    0
                          1
                              .20
               5
                              .20
    3
          1
                    0
                          1
                              .25
    4
               2
          1
                    0
                          1
                              .20
    5
          2
               5
                    0
                          1
    6
          5
               6
                    0
                          1
                              .25
    7
          5
                              .20
               3
                    0
                          1
                              .20
          2
    8
                    0
                          1
               6
                              . 25
    9
          2
               3
                    0
                          1
   10
                    0
               6
                          1
                              .20
    3
                   -10.
   NONLINEAR TRUSS PROC. ASCE DEC. 1965 TWO MATERIALS RAMBERG OSGOOD LAW
   6 10
           1
                  0
                       2
                             22 30
 0.1000000GE+05
                  65.00000
                              0.3
                                          8.0
 0.10000000E+05
                  45.00000
                               0.3
                                          8.0
   10
        20
               1
                    1
                         10
                               1
                                    .01
    1
          1
               1
    2
                         30.
```

3				60.			
4	1	1				40.	
5				30.		40.	
6				60.		40.	
1	4	5	0	1	.25	i	
2	4	2	0	2	-20		
3	1	5	0	2	.20		
4	1	2	0	1	.25		
5	2	5	0	1	.20		
6	5	6	0	1	. 25		
7	5 2	3	0	2	.20		
8	2	6	0	2	.20		
9	2	3	0	1	.25	•	
10	3	6	0	1	.20		
3	CHEAD	1.46	-10.	- 34 (ONETO	HOATT	04.1
MIT	SHEAR	LAG	PROBL		ONFIG		ON 1
49 0.1020	78	2	2000	1	22	30	6
10	20	1	2000.		0.3	0.01	5.
1	1	i	0.0	-	1	0.01	
2		i	0.				
3		i	1.0				
4		i	1.				
5		i	2.0				
6	1	-	0.		0.	5	
7	•		0.		0.		
8			1.0		G.		
9			1.		0.		
10			2.		0.		
11		1	3.0				
12		1	4.				
13		1	5.	3			
14	1		0.		1.		
15			0.		1.		
16			1.		1.		
17			1.		1.		
18			2.		1.		
19			3.		1.		
20			4.1		1.		
21	1		5.0		1.		
22 23	1		0.		2.		
24			1.		2.		
25			2.		2.		
26			3.		2.	0	
27			4.		2.		
28			5.		2.		
29	1		0.	0	3.		
30			0.	5	3.	0	
31			1.	0	3.	0	
32			2.		3.		
33			3.		3.		
34			4.		3.		
35			5.		3.		
36	1		0.		4.		
37			0.		4.		
38			1.		4.		
39			2.		4.		
40 41			3.		4.		
41			5.		4.		
43	1		0.		5.		
73	1		0.	•	,		

44			0.5			5.0
46			2.0			5.0
47 48			3.0 4.0			5.0 5.0
49			5.0			5.0
1	1	2	6	1	.08	,,,
2	2	6	7	ī	.08	
3	2	3	7	1	.08	
4	3	7	8	1	.08	
5	3	4	8	1	.08	
6	4	8	9	1	80.	
7	4	5	9	1	.08	
8 9	5	9	10 11	1	.08	
10	10	11	19	i	.08	
11	11	12	19	1	80.	
12	12	19	20	1	.08	
13	12	13	20	1	.08	
14	13	20	21	1	.08	
15 16	6	7 14	14	1	.08	
17	7	8	15 15	1	.08	
18	8	15	16	i	.08	
19	8	9	16	1	.08	
20	9	16	17	1	.08	
21	9	10	17	1	.08	
22	10	17	18	1	.08	
23	10 14	18 15	19 22	1	.08	
25	15	22	23	i	.08	
26	15	16	23	1	.08	
27	16	23	24	1	.08	
28	16	17	24	1	.08	
29	17	24	25	1	.08	
30 31	17 18	18	25 25	1	.08	
32	19	25	26	1	.08	
33	19	20	26	1	.08	
34	20	26	27	1	.08	
35	20	21	27	1	.08	
36	21	27	28	1	.08	
3 7 38	22	23 29	29	1	.08	
39	23	24	30 30	1	.08	
40	24	30	31	ī	.08	
41	24	25	31	1	.08	
42	25	31	32	1	.08	
43	25	26	32	1	.08	
44	26 26	32 27	33 33	1	.08	
46	27	33	34	1	.08	
47	27	28	34	1	.08	
48	28	34	35	1	.08	
49	29	30	36	1	.08	
50	30	36	37	1	.08	
51	30	31	37	1	.08	
52 53	31 31	37 32	38 38	1	.08	
54	32	38	39	1	.08	
55	33	39	32	î	.08	
56	33	39	40	1	.08	

```
57
        33
              34
                   40
                          1 .08
   58
        34
              40
                    41
                          1 .08
   59
         34
              35
                    41
                          1 .08
   60
         35
              41
                    42
                          1 .08
              37
   61
        36
                    43
                          1 .08
                          1 .08
   62
         37
              43
                    44
        37
   63
              38
                    44
                          1 .08
   64
         38
              44
                    45
                          1 .08
                          1 .08
1 .08
1 .08
              39
                    45
   65
         38
   66
         39
              45
                    46
         39
              40
   67
                    46
   68
        40
              46
                    47
                          1 .08
   69
         40
              41
                    47
                          1 .08
   70
              47
                          1 .08
         41
                    48
                          1 .08
   71
         41
              42
                    48
   72
         42
              48
                    49
                          1 .08
   73
         1
              6
                          10.0452
   74
         6
              14
                          10.0754
   75
         14
              22
                          10.15
   76
         22
              29
                           10.25
   77
                           10.35
         29
              36
   78
         36
              43
                           10.45
   43
                 10000.
$EOF
```

UNCLASSIFIED				
Security Classification	201 2121 21			
DOCUMENT CONT				
(Security classification of title, body of abstract and indexing a 1. ORIGINATING ACTIVITY (Corporate author)	innotation must be e		CURITY CLASSIFICATION	
Air Force Flight Dynamics Laboratory	2b. GROUP	lassified		
Wright-Patterson Air Force Base, Ohio				
3. REPORT TITLE				
AN APPLICATION OF THE FINITE ELPLASTIC PROBLEMS OF PLANE STRI		ETHOD TO	O ELASTIC-	
4. OESCRIPTIVE NOTES (Type of report and inclusive dates)				
S. AUTHOR(S) (First name, middle initial, last name)				
Salmon, M.				
Berke, L.				
Sandhu, R.				
	78. TOTAL NO. O	F PAGES	7b. NO. OF REFS	
April 1970	57		8	
8a, CONTRACT OR GRANT NO.	98. ORIGINATOR	REPORT NUME	ER(S)	
b. PROJECT NO. 1467	AFFDL-7	ΓR-68-39		
c. Task No. 146701	9b. OTHER REPORT	RT NO(S) (Any of	her numbers that may be assigned	
d.				
10. DISTRIBUTION STATEMENT				
This document has been approved for pulunlimited. In DDC. Aval frm CFSTI.	blic release	and sale;	its distribution is	
11. SUPPLEMENTARY NOTES	12. SPONSORING	MILITARY ACTI	VITY	
			ynamics Laboratory Air Force Base, Ohio 45433	
13. ABSTRACT				
A computer program is presented for structures in the strain hardening elasti	or the small c-plastic ra	strain and nge. The	alysis of plane finite element	

A computer program is presented for the small strain analysis of plane structures in the strain hardening elastic-plastic range. The finite element displacement method is used to perform the linear analyses in the iterative scheme. Bar and constant strain isotropic plane stress triangles are available for use in constructing structural idealizations. The use of ten different sets of material properties, three different material laws, and incremental proportional loading are available as options. Good correlation is shown with available test data and theoretical solutions.

The distribution of this abstract is unlimited.

UNCLASSIFIED Security Classification

14. LINK A LINK C KEY WOROS ROLE ROLE ROLE WT w T WT Elasticity Plasticity Structural Analysis Displacement Method Finite Element Method

UNCLASSIFIED	
Security Classification	